Study Suggests Baby Chicks Can Count! ~ Video

Excerpt from
By Tia Ghose, LiveScience

It's not just humans who can count: Newly published research suggests chicks seem to have a number sense, too. 

Scientists found that chicks seem to count upward, moving from left to right. They put smaller numbers on the left, and larger numbers on the right — the same mental representation of the number line that humans use. 

"Our results suggest a rethinking of the relationship between numerical abilities and verbal language, providing further evidence that language and culture are not necessary for the development of a mathematical cognition," said study lead author Rosa Rugani, a psychologist at the University of Padova in Italy.

The left-to-right way of thinking about ascending numbers seems to be embedded in people's mental representations of numbers, but it's not clear exactly why. Is it an artifact of some long-lost accident of history, or is it a fundamental aspect of the way the brain processes numbers? 

To help answer those questions, Rugani and her colleagues trained 3-day-old chicks to travel around a screen panel with five dots on it to get to a food treat behind it. This made the five-dot panel an anchor number that the chicks could use for comparison with other numbers. 

After the chicks learned that the five-dot panel meant food, the researchers removed that panel and then placed the chicks in front of two panels, one to the left and the other to the right, that each had two dots. The chicks tended to go to the left panel, suggesting that they mentally represent numbers smaller than five as being to the left of five. 

When the researchers put the chicks in front of two panels that each had eight dots, the chicks walked to the panel on the right. This suggests the chicks mentally represent numbers larger than five as being to the right of five, the researchers said. 

In a second experiment, the researchers repeated the whole process, but started with a panel that had 20 dots instead of five. They then added two other panels that had either eight or 32 dots. Sure enough, the baby chicks tended to go to the left when the screens had just eight dots, and to the right when they had 32 dots, according to the findings published in this week's issue of the journal Science. 

"I would not at all be surprised that the number spatial mapping is also found in other animals, and in newborn infants," Rugani said.

Click to zoom

Is Cancer a Gift and Not a Curse? Greg Giles

We all, thankfully, have to leave this world and return home eventually, one day, when it is time. This is an inevitable fact of our journey here. With this in mind, can you think of any other way to leave here that allows a soul to look back and reflect upon their lives, their lessons learned and their lessons perhaps missed? That permits a soul to see their loved ones one last time to properly say farewell - for now at least? Can you think of any other way to leave here that affords enough time to prepare oneself for the incredible journey ahead? 

Can you imagine the sadness a soul must feel if he or she passed away suddenly, leaving no time whatsoever to say goodbye to all those who they have loved so dearly? Could you imagine the shock a soul may feel upon suddenly being whisked away to awaken on the  other side, having absolutely no idea their time was approaching? Could you imagine what that kind of departure would do to many souls? 

Yes, there is no doubt, cancer is a terrible disease that ravages the body and many times causes great pain, but could this be the universe's way to assist someone overcome perhaps the greatest obstacle to leaving this plane and returning home - letting go? 

With all these gifts that cancer brings, can it be such a curse?

Greg Giles 

SpaceX video demonstrates the future of space launches ~ Video

When Falcon Heavy lifts off later this year, it will be the most powerful operational rocket in the world by a factor of two. Thrust at liftoff is equal to approximately eighteen 747 aircraft operating simultaneously.


Excerpt from

An animation depicting SpaceX's Falcon Heavy rocket lifting off into space shows the rocket's three boosters separating from the spacecraft and flying back to their launch site, where they land upright.

An amazing new video from SpaceX shows the spaceflight company's incredible plans for a reusable mega-rocket.
The 2.5-minute Falcon Heavy rocket animation shows the spaceflight firm's plans to land the three boosters of its giant rocket back on Earth after launching missions to orbit. The three nine-engine boosters are equivalent to the booster used is used to power the core stage of the Falcon 9 rocket used to launch payloads to space currently. SpaceX representatives expect to start flights of the Falcon 9 Heavy later this year.

"When Falcon Heavy lifts off later this year, it will be the most powerful operational rocket in the world by a factor of two," SpaceX representatives wrote in a video description. "Thrust at liftoff is equal to approximately eighteen 747 aircraft operating simultaneously." 

SpaceX's Falcon Heavy will stand a towering 224.4 feet (68.4 meters) tall with 27 engines powering its three-booster first stage. The rocket's second stage has one engine that can help deliver a satellite or other payload to a chosen orbit after it separates from the first stage of the rocket.
The new video shows a Falcon Heavy soaring into space from the historic Launch Complex-39A at NASA's Kennedy Space Center in Florida. (SpaceX signed a deal with NASA to use the launch pad in 2014). After the two side boosters separate, they turn back around and make a perfect landing, upright on a pad on Earth. The core booster of the rocket separates from the second stage before flying back to the ground like the other two nine-engine boosters. The rocket's second stage finishes delivering its satellite payload to orbit.
Achieving complete rocket reusability has long been a goal of SpaceX and its founder, billionaire entrepreneur Elon Musk, as a way of dramatically lowering the cost of spaceflight for both unmanned launches and, eventually, crewed missions. But SpaceX still has a way to go before this kind of reusable rocket dream can become a reality.
The company recently brought the boost stage of its current Falcon 9 rocket back from space in an attempt to land it on a floating platform in the Atlantic Ocean. While SpaceX did managed to return the stage back to Earth, it exploded after impacting the platform. SpaceX founder Elon Musk later said the returning rocket ran out hydraulic fluid used to control its stabilization fins during the descent.
The company has managed to successfully practice Falcon 9 rocket landings in the ocean just before splashdown, and Musk recently said that SpaceX will try to land another Falcon 9 booster on its ocean platform soon, possibly in February.
"Next rocket landing on drone ship in 2 to 3 weeks [with] way more hydraulic fluid," Musk wrote on Twitter on Jan. 16. "At least it [should] explode for a [different] reason."

Click to zoom

Astronomers find ancient solar system more than double ours in age

The ancient solar system Kepler-444

AP Aerospace Writer

A newly discovered solar system -- with five small rocky planets -- makes ours look like a baby.

An international team of astronomers announced Tuesday that this extrasolar system is 11.2 billion years old. With the age of the universe pegged at 13.8 billion years, this is the oldest star with close-to-Earth-size planets ever found.

By comparison, our solar system is 4.5 billion years old.

The five planets are smaller than Earth, with the largest about the size of Venus and the smallest just bigger than Mercury. These planets orbit their star in less than 10 days at less than one-tenth the Earth's distance from the sun, which makes them too close for habitation, said the University of Sydney's Daniel Huber, part of the team.

"We've never seen anything like this -- it is such an old star and the large number of small planets make it very special," Huber said in a statement. "It is extraordinary that such an ancient system of terrestrial-sized planets formed when the universe was just starting out, at a fifth its current age."

Lead researcher Tiago Campante of the University of Birmingham in England noted in a statement that by now knowing close-to-Earth-size planets formed so long ago, that "could provide scope for the existence of ancient life in the galaxy."

Campante, an asteroseismologist, measured oscillations from the star to determine the age and size of this compact system.

NASA's Kepler planet-hunting spacecraft was used to make the observations over a four-year period. Thus, the bright sunlike star at the heart of this system is named Kepler-444. It's in the Constellation Lyre.

The team represented scientists from Europe, Australia and the United States. Their findings were reported in the latest edition of the Astrophysical Journal.

Kepler has discovered more than 1,000 confirmed exoplanets -- planets outside our solar system -- and nearly 4,200 candidates since its launch in 2009 and its revitalization in last year following a breakdown in its pointing system. It reached the 1,000-mark earlier this month.

Hubble Juiced! ~ CU-Boulder to Design Space Telescope 1000 Times Sharper than Hubble

CU-Boulder to Design Space Telescope 1000 Times Sharper than Hubble
The Hubble Space Telescope

Excerpt from

Researchers from the Department of Astrophysical and Planetary Sciences at the University of Colorado Boulder are currently working on an improved version of space telescope that could provide space images nearly 1,000 times sharper than those provided by long-running Hubble.

The new space telescope, dubbed the Aragoscope, is named after a French astronomer called Francois Arago. The new telescope is exclusively designed by the CU- Boulder scientists and involves a brand new technology developed by the university. According to its designers, the space optical instrument would be lighter, slimmer, and sharper than Hubble.

Additionally, the Aragoscope will involve several independent pieces that can be later assembled in space. So, the launching costs of these smaller building blocks will be significantly reduced.
Traditionally, space telescopes have essentially been monolithic pieces of glass like the Hubble Space Telescope. But the heavier the space telescope, the more expensive the cost of the launch,”
said Anthony Harness, one of the researchers involved in the project and doctoral student at the CU-Boulder.

However, the new instrument will not replace Hubble, which is scheduled to be shut down in 5 years time. Last year, Hubble had its fifth and final maintenance service, and it was still in a pretty good shape although one of its six gyroscopes couldn’t be stabilized. Despite Hubble has been operating since 1990, NASA engineers hope that it will make it to its 30th anniversary.

If Hubble remains operational, NASA plans to use it along with its successor, the James Webb Space Telescope, which is scheduled to be launched in October 2018. Astronomers hope that the two space telescopes, which use two different imaging methods, would help them better understand the origins and early evolution of the universe.

But the UC-Boulder team claim that their new space telescope would surpass Hubble with its enhanced capacity of spotting distant Earth-like planets in the depths of a remote universe...

Cycles in the Sky: Crash Course Astronomy #3

Click to zoom

The Magic of Fibonacci Numbers ~ With Arthur Benjamin:

Click to zoom

Milky Way Versus Andromeda As Seen from Earth

Our beautiful Milky Way galaxy

Click to zoom

Neptune-Like Planets Could Transfom Into Habitable Worlds

Strong irradiation from the host star can cause planets known as mini-Neptunes in the habitable zone to shed their gaseous envelopes and become potentially habitable worlds.
Credit: Rodrigo Luger / NASA images

Excerpt from

Two phenomena known to inhibit the potential habitability of planets -- tidal forces and vigorous stellar activity -- might instead help chances for life on certain planets orbiting low-mass stars, astronomers have found.

Two phenomena known to inhibit the potential habitability of planets -- tidal forces and vigorous stellar activity -- might instead help chances for life on certain planets orbiting low-mass stars, University of Washington astronomers have found.
In a paper published this month in the journal Astrobiology, UW doctoral student Rodrigo Luger and co-author Rory Barnes, research assistant professor, say the two forces could combine to transform uninhabitable "mini-Neptunes" -- big planets in outer orbits with solid cores and thick hydrogen atmospheres -- into closer-in, gas-free, potentially habitable worlds.

Most of the stars in our galaxy are low-mass stars, also called M dwarfs. Smaller and dimmer than the sun, with close-in habitable zones, they make good targets for finding and studying potentially habitable planets. Astronomers expect to find many Earthlike and "super-Earth" planets in the habitable zones of these stars in coming years, so it's important to know if they might indeed support life.

Super-Earths are planets greater in mass than our own yet smaller than gas giants such as Neptune and Uranus. The habitable zone is that swath of space around a star that might allow liquid water on an orbiting rocky planet's surface, perhaps giving life a chance.

"There are many processes that are negligible on Earth but can affect the habitability of M dwarf planets," Luger said. "Two important ones are strong tidal effects and vigorous stellar activity."
A tidal force is a star's gravitational tug on an orbiting planet, and is stronger on the near side of the planet, facing the host star, than on the far side, since gravity weakens with distance. This pulling can stretch a world into an ellipsoidal or egglike shape as well as possibly causing it to migrate closer to its star.

"This is the reason we have ocean tides on Earth, as tidal forces from both the moon and the sun can tug on the oceans, creating a bulge that we experience as a high tide," Luger said. "Luckily, on Earth it's really only the water in the oceans that gets distorted, and only by a few feet. But close-in planets, like those in the habitable zones of M dwarfs, experience much stronger tidal forces."

This stretching causes friction in a planet's interior that gives off huge amounts of energy. This can drive surface volcanism and in some cases even heat the planet into a runaway greenhouse state, boiling away its oceans, and all chance of habitability.

Vigorous stellar activity also can destroy any chance for life on planets orbiting low-mass stars. M dwarfs are very bright when young and emit lots of high-energy X-rays and ultraviolet radiation that can heat a planet's upper atmosphere, spawning strong winds that can erode the atmosphere away entirely. In a recent paper, Luger and Barnes showed that a planet's entire surface water can be lost due to such stellar activity during the first few hundred million years following its formation.

"But things aren't necessarily as grim as they may sound," Luger said. Using computer models, the co-authors found that tidal forces and atmospheric escape can sometimes shape planets that start out as mini-Neptunes into gas-free, potentially habitable worlds.

How does this transformation happen?

Mini-Neptunes typically form far from their host star, with ice molecules joining with hydrogen and helium gases in great quantity to form icy/rocky cores surrounded by massive gaseous atmospheres.

"They are initially freezing cold, inhospitable worlds," Luger said. "But planets need not always remain in place. Alongside other processes, tidal forces can induce inward planet migration." This process can bring mini-Neptunes into their host star's habitable zone, where they are exposed to much higher levels of X-ray and ultraviolet radiation.

This can in turn lead to rapid loss of the atmospheric gases to space, sometimes leaving behind a hydrogen-free, rocky world smack dab in the habitable zone. The co-authors call such planets "habitable evaporated cores."

"Such a planet is likely to have abundant surface water, since its core is rich in water ice," Luger said. "Once in the habitable zone, this ice can melt and form oceans," perhaps leading to life.

Barnes and Luger note that many other conditions would have to be met for such planets to be habitable. One is the development of an atmosphere right for creating and recycling nutrients globally.

Another is simple timing. If hydrogen and helium loss is too slow while a planet is forming, a gaseous envelope would prevail and a rocky, terrestrial world may not form. If the world loses hydrogen too quickly, a runaway greenhouse state could result, with all water lost to space.

"The bottom line is that this process -- the transformation of a mini-Neptune into an Earthlike world -- could be a pathway to the formation of habitable worlds around M dwarf stars," Luger said.
Will they truly be habitable? That remains for future research to learn, Luger said.

"Either way, these evaporated cores are probably lurking out there in the habitable zones of these stars, and many may be discovered in the coming years."

Incredible 50-ft dinosaur unearthed by Chinese farmers

This illustration shows what the newly discovered long-necked dinosaur may have looked like.
This illustration shows what the newly discovered long-necked dinosaur may have looked like.

Excerpt from

Paleontologists have discovered a 50-ft "dragon" dinosaur species in China that may have roamed the earth 160 million years ago in the Late Jurassic period.

The long skeleton was found in 2006 by some local farmers digging for a fishpond in Qijiang city in China's southwestern Chongqing province. 

Lida Xing, a member of the research team from the University of Alberta who made the discovery, told CNN it was named Qijianglong, the "dragon of Qijiang" because farmers thought the bones resembled the shape of Chinese mythical dragons. 

The reconstructed skeleton of Qijianglong in Qijiang Museum in China

"We found the dinosaur's huge vertebrae with the skull and the tail, but couldn't find any bones from the hands or the legs. So the locals began to say the long body looked just like a dragon from ancient Chinese stories," he said Xing. 

The findings, published earlier this week in the Journal of Vertebrate Paleontology, show that the new species belongs to a group of dinosaurs called mamenchisaurids, known for their extremely long necks, which would measure up to half their body length. 

Most sauropods, or long-necked dinosaurs, such as those depicted in the popular animated series, "The Land Before Time," have necks that only span one third of their body length.

The skeleton is now housed in a local museum in Qijiang, but will be moved to a new dinosaur museum in the city that is currently being built.

Dinosaurs were NOT wiped out by a global firestorm: Asteroid impact was not hot enough to ignite nearby plants, study claims

UK researchers studied the asteroid impact 66 million years ago (illustration shown). They found the heat near the impact site in Mexico was not intense enough to ignite plant material. A heat pulse lasted less than a minute, too short to set plants alight

Excerpt from
By Jonathan O'Callaghan

  • UK researchers studied the asteroid impact 66 million years ago
  • They found the heat near the impact site in Mexico was not intense enough to ignite plant material
  • A heat pulse lasted less than a minute, too short to set plants alight
  • Further away in places like New Zealand, the heat could have lasted up to seven minutes and caused some localised fires
  • But the theory that a global firestorm accompanied the asteroid impact is not correct, according to the scientists

The theory that a global firestorm accompanied the asteroid that killed off the dinosaurs may not be correct, according to a new study.

A team of researchers has found that heat near the impact site would not have been sufficient to ignite plants.

It suggests our understanding of the mass extinction event that wiped out the dinosaurs may not be as complete as thought.

UK researchers studied the asteroid impact 66 million years ago (illustration shown). They found the heat near the impact site in Mexico was not intense enough to ignite plant material. A heat pulse lasted less than a minute, too short to set plants alight
The team of researchers from the University of Exeter, University of Edinburgh and Imperial College London recreated the immense energy that would have been released from the asteroid impact 66 million years ago.

They found that the intense but short-lived heat near the impact site could not have ignited live plants, challenging the idea that the impact led to global firestorms.

These firestorms have previously been considered a major contender in the puzzle to find out what caused the mass extinction of life on Earth 66 million years ago.

Where Did Humans Come From Documentary

Click to zoom

Traveling Through the Milky Way

Why are we here? Where did we come from? Science & Our Universe

Click to zoom

Signs You’re The Passive Aggressive Friend

Click to zoom

Where Did The Earth Come From?

Click to zoom

Misconceptions About the Universe

Click to zoom

What Will We Never See in the Universe?

Click to zoom

How 40,000 Tons of Cosmic Dust Falling to Earth Affects You and Me

Picture of The giant star Zeta Ophiuchi is having a "shocking" effect on the surrounding dust clouds in this infrared image from NASA's Spitzer Space Telescope
In this infrared image, stellar winds from a giant star cause interstellar dust to form ripples. There's a whole lot of dust—which contains oxygen, carbon, iron, nickel, and all the other elements—out there, and eventually some of it finds its way into our bodies.
Photograph by NASA, JPL-Caltech

We have stardust in us as old as the universe—and some that may have landed on Earth just a hundred years ago.


Excerpt from National Geographic
By Simon Worrall

Astrophysics and medical pathology don't, at first sight, appear to have much in common. What do sunspots have to do with liver spots? How does the big bang connect with cystic fibrosis?
Book jacket courtesy of schrijver+schrijver

Astrophysicist Karel Schrijver, a senior fellow at the Lockheed Martin Solar and Astrophysics Laboratory, and his wife, Iris Schrijver, professor of pathology at Stanford University, have joined the dots in a new book, Living With the Stars: How the Human Body Is Connected to the Life Cycles of the Earth, the Planets, and the Stars.

Talking from their home in Palo Alto, California, they explain how everything in us originated in cosmic explosions billions of years ago, how our bodies are in a constant state of decay and regeneration, and why singer Joni Mitchell was right.

"We are stardust," Joni Mitchell famously sang in "Woodstock." It turns out she was right, wasn't she?

Iris: Was she ever! Everything we are and everything in the universe and on Earth originated from stardust, and it continually floats through us even today. It directly connects us to the universe, rebuilding our bodies over and again over our lifetimes.

That was one of the biggest surprises for us in this book. We really didn't realize how impermanent we are, and that our bodies are made of remnants of stars and massive explosions in the galaxies. All the material in our bodies originates with that residual stardust, and it finds its way into plants, and from there into the nutrients that we need for everything we do—think, move, grow. And every few years the bulk of our bodies are newly created.

Can you give me some examples of how stardust formed us?

Karel: When the universe started, there was just hydrogen and a little helium and very little of anything else. Helium is not in our bodies. Hydrogen is, but that's not the bulk of our weight. Stars are like nuclear reactors. They take a fuel and convert it to something else. Hydrogen is formed into helium, and helium is built into carbon, nitrogen and oxygen, iron and sulfur—everything we're made of. When stars get to the end of their lives, they swell up and fall together again, throwing off their outer layers. If a star is heavy enough, it will explode in a supernova.

So most of the material that we're made of comes out of dying stars, or stars that died in explosions. And those stellar explosions continue. We have stuff in us as old as the universe, and then some stuff that landed here maybe only a hundred years ago. And all of that mixes in our bodies.

Picture of the remnants of a star that exploded in a supernova
Stars are being born and stars are dying in this infrared snapshot of the heavens. You and I—we come from stardust.
Photograph by NASA, JPL-Caltech, University of Wisconsin

Your book yokes together two seemingly different sciences: astrophysics and human biology. Describe your individual professions and how you combined them to create this book.

Iris: I'm a physician specializing in genetics and pathology. Pathologists are the medical specialists who diagnose diseases and their causes. We also study the responses of the body to such diseases and to the treatment given. I do this at the level of the DNA, so at Stanford University I direct the diagnostic molecular pathology laboratory. I also provide patient care by diagnosing inherited diseases and also cancers, and by following therapy responses in those cancer patients based on changes that we can detect in their DNA.

Our book is based on many conversations that Karel and I had, in which we talked to each other about topics from our daily professional lives. Those areas are quite different. I look at the code of life. He's an astrophysicist who explores the secrets of the stars. But the more we followed up on our questions to each other, the more we discovered our fields have a lot more connections than we thought possible.

Karel: I'm an astrophysicist. Astrophysicists specialize in all sorts of things, from dark matter to galaxies. I picked stars because they fascinated me. But no matter how many stars you look at, you can never see any detail. They're all tiny points in the sky.

So I turned my attention to the sun, which is the only star where we can see what happens all over the universe. At some point NASA asked me to lead a summer school for beginning researchers to try to create materials to understand the things that go all the way from the sun to the Earth. I learned so many things about these connections I started to tell Iris. At some point I thought: This could be an interesting story, and it dawned on us that together we go all the way, as she said, from the smallest to the largest. And we have great fun doing this together.

We tend to think of our bodies changing only slowly once we reach adulthood. So I was fascinated to discover that, in fact, we're changing all the time and constantly rebuilding ourselves. Talk about our skin.

Iris: Most people don't even think of the skin as an organ. In fact, it's our largest one. To keep alive, our cells have to divide and grow. We're aware of that because we see children grow. But cells also age and eventually die, and the skin is a great example of this.
It's something that touches everything around us. It's also very exposed to damage and needs to constantly regenerate. It weighs around eight pounds [four kilograms] and is composed of several layers. These layers age quickly, especially the outer layer, the dermis. The cells there are replaced roughly every month or two. That means we lose approximately 30,000 cells every minute throughout our lives, and our entire external surface layer is replaced about once a year.

Very little of our physical bodies lasts for more than a few years. Of course, that's at odds with how we perceive ourselves when we look into the mirror. But we're not fixed at all. We're more like a pattern or a process. And it was the transience of the body and the flow of energy and matter needed to counter that impermanence that led us to explore our interconnectedness with the universe.

You have a fascinating discussion about age. Describe how different parts of the human body age at different speeds.

Iris: Every tissue recreates itself, but they all do it at a different rate. We know through carbon dating that cells in the adult human body have an average age of seven to ten years. That's far less than the age of the average human, but there are remarkable differences in these ages. Some cells literally exist for a few days. Those are the ones that touch the surface. The skin is a great example, but also the surfaces of our lungs and the digestive tract. The muscle cells of the heart, an organ we consider to be very permanent, typically continue to function for more than a decade. But if you look at a person who's 50, about half of their heart cells will have been replaced.

Our bodies are never static. We're dynamic beings, and we have to be dynamic to remain alive. This is not just true for us humans. It's true for all living things.

A figure that jumped out at me is that 40,000 tons of cosmic dust fall on Earth every year. Where does it all come from? How does it affect us?

Karel: When the solar system formed, it started to freeze gas into ice and dust particles. They would grow and grow by colliding. Eventually gravity pulled them together to form planets. The planets are like big vacuum cleaners, sucking in everything around them. But they didn't complete the job. There's still an awful lot of dust floating around.

When we say that as an astronomer, we can mean anything from objects weighing micrograms, which you wouldn't even see unless you had a microscope, to things that weigh many tons, like comets. All that stuff is still there, being pulled around by the gravity of the planets and the sun. The Earth can't avoid running into this debris, so that dust falls onto the Earth all the time and has from the very beginning. It's why the planet was made in the first place. 

Nowadays, you don't even notice it. But eventually all that stuff, which contains oxygen and carbon, iron, nickel, and all the other elements, finds its way into our bodies.

When a really big piece of dust, like a giant comet or asteroid, falls onto the Earth, you get a massive explosion, which is one of the reasons we believe the dinosaurs became extinct some 70 million years ago. That fortunately doesn't happen very often. But things fall out of the sky all the time. [Laughs]

Many everyday commodities we use also began their existence in outer space. Tell us about salt.

Karel: Whatever you mention, its history began in outer space. Take salt. What we usually mean by salt is kitchen salt. It has two chemicals, sodium and chloride. Where did they come from? They were formed inside stars that exploded billions of years ago and at some point found their way onto the Earth. Stellar explosions are still going on today in the galaxy, so some of the chlorine we're eating in salt was made only recently.

You study pathology, Iris. Is physical malfunction part of the cosmic order?

Iris: Absolutely. There are healthy processes, such as growth, for which we need cell division. Then there are processes when things go wrong. We age because we lose the balance between cell deaths and regeneration. That's what we see in the mirror when we age over time. That's also what we see when diseases develop, such as cancers. Cancer is basically a mistake in the DNA, and because of that the whole system can be derailed. Aging and cancer are actually very similar processes. They both originate in the fact that there's a loss of balance between regeneration and cell loss.

Cystic fibrosis is an inherited genetic disease. You inherit an error in the DNA. Because of that, certain tissues do not have the capability to provide their normal function to the body. My work is focused on finding changes in DNA in different populations so we can understand better what kinds of mutations are the basis of that disease. Based on that, we can provide prognosis. There are now drugs that target specific mutations, as well as transplants, so these patients can have a much better life span than was possible 10 or 20 years ago.

How has writing this book changed your view of life—and your view of each other?

Karel: There are two things that struck me, one that I had no idea about. The first is what Iris described earlier—the impermanence of our bodies. As a physicist, I thought the body was built early on, that it would grow and be stable. Iris showed me, over a long series of dinner discussions, that that's not the way it works. Cells die and rebuild all the time. We're literally not what were a few years ago, and not just because of the way we think. Everything around us does this. Nature is not outside us. We are nature.

As far as our relationship is concerned, I always had a great deal of respect for Iris, and physicians in general. They have to know things that I couldn't possibly remember. And that's only grown with time.

Iris: Physics was not my favorite topic in high school. [Laughs] Through Karel and our conversations, I feel that the universe and the world around us has become much more accessible. That was our goal with the book as well. We wanted it to be accessible and understandable for anyone with a high school education. It was a challenge to write it that way, to explain things to each other in lay terms. But it has certainly changed my view of life. It's increased my sense of wonder and appreciation of life.

In terms of Karel's profession and our relationship, it has inevitably deepened. We understand much better what the other person is doing in the sandboxes we respectively play in. [Laughs]

New prehistoric human discovered in Taiwan

human jaw fossil found in Taiwan
“Penghu 1,” the newly discovered human with large teeth, is another piece of critical evidence suggesting that other humans besides Homo sapiens lived in Asia from 200,000 to 10,000 years ago.

Excerpt from

Paleontologists have identified the first known prehistoric human specimen from Taiwan, which may have been part of a species that lived alongside modern humans until as recently as 10,000 years ago.
“Penghu 1,” the newly discovered human with large teeth, is another piece of critical evidence suggesting that other humans besides Homo sapiens lived in Asia from 200,000 to 10,000 years ago.
Among the species that lived in Europe within that period were Neanderthals, Denisovans and Homo floresiensis The Penghu 1, which has been described in the most recent issue of Nature Communications, has added to that sizable list of humans that may have lived with and interbred with modern humans.

“The available evidence at least does not exclude the possibility that they survived until the appearance of Homo sapiens in the region, and it is tempting to speculate about their possible contact,” said the study’s co-author Yousuke Kaifu, an associate professor in the Department of Biological Sciences at The University of Tokyo, to Discovery News.
Kaifu, along with the paper’s lead author Chun-Hsiang Chang, and their team have studied the new human’s remains, primarily a jawbone that still contains big teeth. The jawbone was found by fishermen off the Taiwanese coast in the Penghu Channel. They then sold it to a local antique shop where it was found and bought by the collector Kun-Yu Tsai, who donated his collection to the National Museum of Natural Science in Taiwan. It then caught the eye of Chang, who works at the museum as a geologist.
Chang and his team now believe that the Penghu 1 could suggest a new species of human or at least a distinct regional group of Homo erectus. He suspects that the jawbone belonged to an elderly adult due to the worn state of the teeth. Unlike Homo floresiensis, the Penghu 1 grew to adult stature and lived on the Asian mainland.
“The associated faunal remains suggest that the area was a relatively open, wet woodland,” said Kaifu. “This is because of the presence of large-bodied mammals, such as elephants (Stegodon), horses and bear, but the fauna also included animals that prefer marshlands in a hot and humid climate, such as water buffaloes.”
All of these aspects would seem very attractive to modern humans, as well as the prehistoric humans they co-existed with. Although Penghu 1 is clearly not a modern human, its jaw bears many similarities to Homo erectus. Very little is known about human evolution in Asia, so this is a considerably welcome discovery, as fossils from much earlier periods discovered in China have offered valuable insights into what a Cretaceous ecosystem looked like. There are also many similarities between Penghu 1 and the Peking Man remains from Zhoukoudian, China, although the former appears to be much more primitive. It has also been compared to the archaic Homo heidelbergensis and also Denisovan remains.

Scientists Slow Down The Speed Of Light in Lab

Photon race rendering
Two photons, or particles of light approach a finish line used to determine if light can travel at different speeds through the air. Illustration courtesy University of Glasgow

Excerpt from

Light passes through air at about 299,000,000 meters per second, an accepted constant that hasn’t been challenged—until now. By manipulating a single particle of light as it passed through free space, researchers have found a way to slow down the speed of light through air.

Scientists have known for a while how fast light passes through different mediums, such as water or glass, and how to slow that speed down. But researchers at the University of Glasgow and Heriot-Watt University decided to take this concept further and see if the speed of light could be changed as it passes through gases.
To make that happen, the team decided to look at individual light particles, or photons. “Measuring with single photons is the cleanest experiment you can get,” Jacquiline Romero, one of the study’s lead authors and a physics professor at the University of Glasgow, tells Popular Science. The group wanted to explicitly establish that different photons have different velocities depending on their placement within a light beam's structure. Depending on where a photon is in a light beam, it has either a slower or faster relative speed. It's similar to a group of runners: Even as the group stays together, the one at the front has to constantly be moving faster than the ones at the side or in the back. Daniel Giovannini, another study lead author from the University of Glasgow, says that researchers have known this for a while, but the team wanted to know just how slow the photons in the 'back of the pack' are moving.

The experiment set out to measure the arrival times of single photons, Romero says. To do that, the researchers passed one photon through a filter, which changed the photon's structure. They then compared the velocity of this photon to an unstructured photon. The researchers were able to decrease the velocity of the structured photon through air by 0.001 percent, which seems quite small, but the amount was not accidental. “We had to try it out and convince ourselves that it can be done and that it’s real,” Giovannini says. He and Romero say they anticipate the results will be divisive, between people who think the conclusion is obvious and those who think it’s a groundbreaking experiment.

The study was published January 23 in Science Express.

Why Is Andromeda Coming Towards Us?

The Andromeda galaxy

Click to zoom

Do You Have an Accurate Concept of Historical Time?

Click to zoom

Can You Make It Through This Video Without Your Mind Melting?

Click to zoom

Fastest Ways To Fall Asleep ~ Experiment

Click to zoom

Women's Ideal Body Types Throughout History

Click to zoom

Mysterious radio signal from space caught live for first time

Excerpt from
Astronomers in Australia have picked up an “alien” radio signal from space for the first time as it occurred. The signal, or radio “burst”, was discovered on May 15, 2014, though it’s just being reported by the Monthly Notices of the Royal Astronomical Society. “The burst was identified within 10 seconds of its occurrence,” said Emily Petroff, a doctoral student from Melbourne’s Swinburne University of Technology. “The importance of the discovery was recognized very quickly and we were all working very excitedly to contact other astronomers and telescopes around the world to look at the location of the burst.”
Emerging from an unknown source, these bursts are bright flashes of radio waves that emit as much energy in a few milliseconds as the sun does in 24 hours.  “The first fast radio burst was discovered in 2007,” Petroff tells, “and up until our discovery there were 8 more found in old or archival data.” While researchers use telescopes in Hawaii, India, Germany, Chile, California, and the California Islands to search for bursts, it is the CSIRO Parkes radio telescope in Eastern Australia that is the first to catch one as its happening.
The cause of these mysterious signals remains unknown, with possible theories ranging from black holes to alien communication. However, UFO hunters shouldn’t get too excited. According to Petroff, “We're confident that they're coming from natural sources, that is to say it's probably not aliens, but we haven't solved the case completely. The two most promising theories at the moment are that these bursts could be produced either by a star producing a highly energetic flare, or from a neutron star collapsing to make a black hole. Both of these things would be from sources in far-away galaxies just reaching us from billions of light years away.”
Catching the bursts as they happen is key to finding the source, and though Petroff’s team scrambled upon making their discovery, they didn’t move fast enough to find the afterglow and pin down the cause. “Finding one in real-time has been the goal for a while because we would then be able to act on it and mobilize other telescopes to look that way,” Petroff says. “We did this in the case of this real-time discovery, but we didn't get on the target until about eight hours later with other telescopes, at which time nothing was found.” However, they were able to eliminate a few possible causes, such as gamma-ray bursts from exploding stars and supernovae. Also, the team was able to determine that the source had been near an object with a sizeable magnetic field from the way the wavelengths were polarized.
While the source of the fast radio burst remains a mystery, the team remains hopeful that they can learn from their mistakes and one day solve the case. “All we can do is learn from our experience with this discovery and create a more efficient system for next time,” Petroff says. “We still spend a large amount of time looking for fast radio bursts with the Parkes telescope and the next time we are in the right place at just the right time, we'll be able to act faster than ever before and hopefully solve the mystery once and for all!”

As Dawn spacecraft closes in on Ceres, things start to look 'rough'

Ceres: Dawn spies dwarf planet
This image, taken 147,000 miles from Ceres by NASA's Dawn spacecraft, is part of a series of views representing the best look so far at the dwarf planet. The spacecraft is set to enter orbit March 6. (NASA)

Eat your heart out, Hubble! NASA’s Dawn spacecraft is in the home stretch of its journey to Ceres and has snapped the best images yet of the dwarf planet. Grainy as they are, the new views of the 590-mile-wide world are already turning up unexpected features on the surface.
“What we expect at Ceres is to be surprised, so it’s getting off to a good start,” said deputy principal investigator Carol Raymond.
The images, taken 147,000 miles from Ceres on Jan. 25, are 30% higher-resolution than the images taken by NASA’s Hubble Space Telescope in 2003 and 2004. They measure 43 pixels wide, a significant improvement over Dawn’s images from earlier this month, which were 27 pixels across.
The images show significant brightness and darkness variations over the surface – particularly a bright spot gleaming in the northern hemisphere and darker spots in the southern hemisphere. While the scientists were aware of those major spots, they weren’t expecting to see quite so much texture on the surface, said Raymond, a geophysicist at the Jet Propulsion Laboratory.

Ceres is fairly warm by ice-world standards; temperatures generally range from 180 to 240 Kelvin (or minus-136 degrees Fahrenheit to minus-28 degrees Fahrenheit), Raymond said. Theoretically, the ice on Ceres’ surface should start to flow as it warms up, smoothing out any bumps such as those from impact craters. But the brightness variations across the surface make it appear very rough, she said.
“This is just starting to illuminate the fact that Ceres is one of these unique bodies that has astrobiological potential ... and it’s just continued to become more intriguing as we’ve been marching inexorably closer,” she added.

Ceres was not the first stop in Dawn’s 3-billion-mile journey. The first was the protoplanet Vesta, which is vastly different from its fellow mega-asteroid, Ceres. Where Vesta is dry and lumpy, Ceres is icy and round, massive enough to have been pulled into a planet-like shape. Scientists want to find out why these two space-fossils from the early solar system ended up with such different geophysical life stories.
At least with Vesta, there were meteorites linked to the asteroid that planetary scientists can study, Raymond pointed out. For Ceres, there are no such space rocks found on Earth – so the researchers have somewhat less of an idea of what to expect.

“I am excited,” Raymond said. “Just having had the wild ride at Vesta, I’m also just in awe of what’s going to happen. It’s going to be amazing.”

The Weirdest, Coolest Stuff We’ve Learned About Rosetta’s Comet So Far

Various features on a smooth part of the comet's surface in the region named Imhotep.


Excerpt from

The Rosetta spacecraft has been studying comet 67P/Churyumov-Gerasimenko up close since August, collecting data of unprecedented detail and taking pictures of a starkly beautiful comet-scape. While the Philae lander has enjoyed much of the spotlight—partly thanks to its now-famous triple landing—Rosetta has been making plenty of its own discoveries.  

One of the biggest came last month, when scientists found that the chemical signature of the comet’s water is nothing like that on Earth, contradicting the theory that crashing comets supplied our planet with water. Comet 67P belongs to the Jupiter family of comets, and the findings also imply that these kinds of comets were formed at a wider range of distances from the sun than previously thought, says Michael A’Hearn, a planetary scientist at the University of Maryland, College Park, and member of the Rosetta science team.  

Today, scientists have published the first big set of results from Rosetta in a slew of papers in the journal Science. The results include measurements and analyses of the comet’s shape, structure, surface, and the surrounding dust and gas particles. Here are just a few of the amazing things they’ve discovered about Rosetta’s comet so far: 

The surface is fantastically weird  
The comet has quite the textured landscape, covered with steep cliffs, boulders, weird bumps, cracks, pits, and smooth terrain. There are fractures of all sizes, including one that’s several yards wide and stretches for more than half a mile along the comet’s neck. Researchers don’t yet know what caused these cracks.  The pits have steep sides and flat bottoms, ranging in size from a few tens to hundreds of feet wide. Jets of dust shoot out from some of the pits, suggesting that the ejection of material formed these features.  Another strange feature is what scientists are calling goosebumps—weird bumpy patches found particularly on steep slopes.

While other features such as pits and fractures range in sizes, all of the goosebumps are about 10 feet wide. No one knows what kind of process would make the bumps, but whatever it is could have played an important part in the comet’s formation. It may be breezy  Rosetta spotted dune- and ripple-like patterns,wind tails behind rocks, and even moats surrounding rocks, suggesting that a light breeze may blow dust along the surface. Such a gentle wind would have to come from gases leaking from below.

Because of the extremely low gravity on the comet, it wouldn’t take a strong gust to blow things around. It may have formed from two separate pieces  Or not. The most distinct feature of comet 67P is its odd, two-lobed shape, which resembles a duck. Although scientists have seen this lobed structure in other comets before, namely Borrelly and Hartley 2, none are as pronounced as comet 67P’s. Borrelly and Hartley 2 look more like elongated potatoes while 67P has a clearly defined head and body. The strange shape suggests the comet was once two separate pieces called cometesimals—what are now the duck’s head and body—that stuck together. 

The other possibility is that erosion ate away the parts around the neck. Preliminary evidence points to the first hypothesis.
“Probably most of us on the OSIRIS team lean toward thinking it was two cometesimals,” A’Hearn said. (OSIRIS is one of Rosetta’s imaging instruments.) But the scientists won’t have conclusive evidence until they study the comet in more detail. For example, they now see layering along the neck—if erosion carved out the comet’s duck shape, they should find the same same layering pattern continuing onto the other side of the neck. 

Black, with a tinge of red  

Even Rosetta’s color pictures show a grayish comet, but if you were to see it in person, you would see a pitch-black chunk of dust and ice, as it reflects only six percent of incoming light. By comparison, the moon reflects 12 percent of incoming light and Earth reflects 31 percent. But comet 67P’s not completely black, as it has a hint of red. Water, water, nowhere?  The comet’s covered in opaque, organic compounds. Although comet 67P is undoubtedly icy, it hardly shows any water ice on its surface at all. 

Which isn’t too surprising, as comets Tempel 1 and Hartley 2 didn’t have much ice on their surfaces either, A’Hearn says. Rosetta has yet to see sunlight reach every side of the comet yet, so there may still be some icy patches hidden from view.  But, researchers do see the comet spraying water vapor into space, which means water ice likely lies just beneath the surface. The ice doesn’t have to be more than a centimeter deep to be invisible from the infrared instruments that detect the ice. Indeed, the data from Philae’s first bounce suggested that there’s a hard layer of ice beneath 4 to 8 inches of dust. 

This duck floats  

If you could find a big enough pond, that is. Like other known comets, the density of comet 67P is about half that of water ice. Initial measurements reveal that it’s also very porous—as much as 80 percent of it may be empty space. Rosetta has found depressions, which may have formed when the surface collapsed over particularly porous material underneath. 

Different from every angle

As the comet nears the sun, it heats up, and ices and other volatile chemicals sublimate, spraying gases into space. So far, the most prominent gases that have been ejected are water vapor, carbon dioxide, and carbon monoxide. They spew out in different amounts from different parts of the comet. In particular, a lot of the water has been observed gushing out from the neck.

The comet will continue to get more active as it reaches its closest approach to the sun in mid-August. It will burst with stronger jets of gas and dust, and maybe even blast off chunks of itself. If the comet is this interesting now, A’Hearn says, just wait until it gets to its nearest point to the sun, when it’s just 1.29 times farther from the sun than Earth is.