“Seedling” For Supermassive Black Holes Found




Excerpt from clapway.com

By  
 

A recently discovered black hole may help astronomers to piece together the family tree of these enigmatic cosmic objects. While most black holes are classified as either stellar-mass or the supermassive black holes that can be found at the center of some galaxies, this new find fits into neither category.

The discovery, called the intermediate-mass black hole (IMBH), has proved to be a tricky proposition. With a mass somewhere between a few hundred to a few hundred thousand times that of our own Sun, the size of these intermediates can vary widely.

This particular black hole was found in an arm of the spiral galaxy NGC-2276, and has been sensibly named NGC-2276-3c. Lying about 100 million light-years from earth, astronomers were able to tease images through the use of NASA’s Chandra X-Ray Observatory and the European Very Long Baseline Interferometry Network.

Although researchers have theorized about the existence of these IMBHs, locating one has proven elusive until now. A recent to-be-published paper by an international team of researchers delves into the specifics of NGC-2276-3c.

“Astronomers have been looking very hard for these medium-sized black holes,” study co-author Tim Roberts, of the University of Durham in the United Kingdom, said in a statement. “There have been hints that they exist, but the IMBHs have been acting like a long-lost relative that isn’t interested in being found.”

So what was found? It appears that the recently discovery has characteristics of both the smaller stellar-mass and the much larger supermassive black holes. It serves as an intermediary between the two, and some think that these intermediaries are the beginnings of what could very well become a supermassive.

The team of researchers also noted that the black holes is firing off super powerful blasts of radio jets. Think of these as material, traveling at nearly the speed of light and emitting radio waves, which are thrown out of dense objects. Our newly found black hole is shooting them out almost 2000 light-years into space. Within a radius of approximately 1000 light-years around NGC-2276-3c there are no new star formations, suggesting that the radio jets are pushing out all the gas necessary for star creation.

The full report on NGC-2276-3c should be appearing shortly in the journal Monthly Notices of the Royal Astronomical Society.