Oldest Known Bigfoot Footage

This footage, taken in Roosevelt National Forest in Colorado, appears to capture a dark fur covered creature jumping from one rock to another. The footage, taken by Gary Bouvier's father during a Boys scout survival camping trip in 1962, is the earliest Bigfoot footage known to exist. Mr Bouvier, the scout leader who captured the footage, stated the creature was covered in brown fur and paused to look directly at him before walking away. The scouts were then instructed not to wander away from camp at any time during the camping trip. 
Greg Giles

Click to zoom

Skywatch: Venus and Jupiter continue to accentuate the night heavens

Venus (right) & Jupiter

In winter’s waning weeks, Venus and Jupiter continue to accentuate the night heavens, we change our clocks forward and we grab spring with no intention of letting go.

Check the west-southwestern heavens at dusk to spy the vivacious Venus and the dim Mars. In late February, the two planets met for a sweet cosmic waltz, but in March, they appear to separate. Venus approaches negative fourth magnitude (very bright) while Mars makes do at magnitude 1.3 (dim, hard to find in urban light pollution). With a clear sky, Mars looks like a red pinpoint. 

A young, waxing crescent moon visits Mars on the evening of March 21, and on the next evening the crescent flirts with Venus.
Robust Jupiter ascends the evening’s eastern sky. Find this gas giant at a -2.5 magnitude, very bright, in the constellation Cancer. The lion in the constellation Leo appears to stare at the planet. By the Ides of March, find it south around 10:30 p.m. 

The waxing gibbous moon drops by the dazzling Jupiter on March 2, days before the moon itself becomes full on March 5. 

Catch the ringed Saturn rising after midnight in the east-southeast now, hanging out near a gang of constellations, Scorpius, Ophiuchus and Libra. It’s a zero magnitude object, bright enough that it can be seen under urban skies. The waning moon loiters near Saturn before dawn on March 12. On that morning, the reddish star below them is Antares.
We adjust our clocks to Daylight Saving Time at 2 a.m. March 8. Spring forward, moving the clock ahead one hour. 

Winter is almost over. Spring is weeks away. The vernal equinox brings spring’s official arrival on March 20 at 6:45 p.m. 

Also on March 20 — the day a new moon — the North Atlantic and the Arctic waters get a short total eclipse. We won’t see it here, but Slooh.com will carry it live. Totality will start seconds after 5:44 a.m. and end at 5:47 a.m., according to Geoff Chester of the U.S. Naval Observatory. 

Scientists Believe Oxygen Free Methane Based Aliens Might Exist on Icy Saturn Moon Titan

Excerpt from viralglobalnews.com

A group of scientists at Cornell University believe that Titan, one of Saturn’s moons, may be a haven of life. However, it would not be in the form that human beings know. Methane based life forms might live on Titan, the scientists have said, after they created a model of an oxygen free life form which would be able to thrive in the icy, unforgiving conditions that Saturn’s moon offers.
They studied the various forms of cell membranes that exist on Earth, which are made up of lipid bi-layer structures. The Cornell scientists said such membranes would not be able to exist in environments where liquid water could not be present, according to Design and Trend.
Titan has plenty of lakes filled with methane, so that means it might not be habitable in the way that scientists had formerly described habitability. However, Dr. James Stevenson and his team thinks that contrarily structured membranes could offer the foundation for life to exist on Saturn’s moon. The model they created used organic nitrogen mixtures, so that the new structure could easily function on Titan in the richness of the methane that exists in liquid form there.


Dr. Stevenson said it was Isaac Asimov, the celebrated sci-fi writer, who first gave the rudimentary inspiration for the idea in the paper he penned, which was called the Not as We Know It essay. It was written about non-water-based life forms. Because Saturn’s moon is the only known celestial form in the solar system to have naturally occurring fluids on its surface, except for the Earth, the group of scientists believe it to be a possible perfect foundation for life forms to develop.
Dr. Paulette Clancy, who has helped lead the group, constructed an “azotosome.” It is comparable in name origin to liposome which comes from the Greek words lipos and soma. An azotosome comes from the French word for nitrogen. Therefore, the word is describing a nitrogen body.
Instead of trying to find alien life within the area that surrounds the Sun where water exists in liquid form, the group decided to try and imagine a new kind of cell, grounded on methane instead of water. Clancy and the team were dumbfounded to find that this new projected model presented an alike stability to the cell membranes already here on Earth.
Dr. Clancy seemed very anxious to carry on the group’s work and find out how such compounds would truly work in the methane atmosphere. Dr. Jonathan Lunine, who is a top expert in Titan and also one of the co-authors of the study, thinks that it might be possible in the future to in fact test these theories by actually examing organic material from Saturn’s moon. In the years to come, Dr. Lunine stated that probes might be sent to Titan to gather the needed material by floating down on the methane seas of the moon of Saturn.
The group discovered a compound they named acrylonitrile azotosome, which appeared to show good stability. It had a strong barricade to decomposition, and a suppleness that was similar to phospholipid membranes that exist on Earth. Acrylonitrile is a poisonous, colorless, liquid organic compound that is used in the production of acrylic fibers and thermoplastics and it is present in Titan’s atmosphere as well.
They have written up about their discovery and what they believe to be possible. The scientists’ paper was printed up in the journal Science Advances on Friday.

The dark future of American space exploration ~ NASA's golden age is about to come to a thudding halt

Excerpt from vox.com 
by David W. Brown

One by one they flickered to life. Venus, first, in 1962, and two and a half years later, Mars. Our spacecraft flew by those planets, orbited them, and became manmade meteors streaking toward the first soil we couldn’t generically call "earth." Later, when we grew ambitious and confident in our abilities, humanity reached for the outer planets, probing Jupiter and Saturn in 1973 and 1979. Each mission turned conjecture into fact, invalidated old assumptions, and brought us closer to one day answering the two fundamental questions of existence: where did all this come from, and where is it headed?

Mission successes don't happen in a void. For every newly lighted world there are crashed probes, lost spacecraft, and rockets destroyed on launch pads. The exploration of other worlds is a cumulative art, and with a steady cadence of missions comes an institutional knowledge for scientists and engineers. Every setback is its own library of insights. In 1964, when probe Mariner 3 missed Mars, its target, due to equipment failure, Mariner 4 was three weeks behind, and succeeded where its twin had failed.
The cadence cannot be interrupted, which is why many planetary scientists now eye warily their calendars. America's starvation budget for planetary exploration has stopped good missions from going forward, and keeps new missions from reaching the launch pad. One by one over the next three years, as missions end and spacecraft die, the outer planets will again go dark.

If NASA's New Horizons mission to Pluto is extended beyond 2017, the entire active human presence at the outer planets will consist of a single probe the size of a grand piano. If the mission is not extended, humanity's 43-year exploration of the outer planets will end, and humanity's horizon will shrink by about 2.5 billion miles. Worse, because of the time necessary to build a spacecraft and the harsh reality of orbital mechanics, the earliest a new mission could be sent beyond the asteroid belt is sometime in the 2020s.
The consequences of a diminished planetary science portfolio go beyond the loss of new wallpaper for desktop computers. Planetary exploration has changed the way we think about everything from the air we breathe to the oceans we sail. By exploring Venus, for example, scientists observed the full expression of the greenhouse effect, which in turn reshaped environmental priorities back on Earth. Meanwhile, the search for life on other planets inspired scientists to find life in unexpected places here at home.
"The more we learn about the other planets out there, the more we learn about Earth," said Dr. Curt Niebur, a program scientist for NASA.
The next three years of outer space exploration are going to produce spectacular scientific data. Very little is known about Pluto, for example, but that will change in July when New Horizons makes its approach. Once New Horizons completes its possible extended mission to an object in the Kuiper Belt, though, there is nothing budgeted in the pipeline to take its place. Yesterday invested in today. But we are not investing in tomorrow.

The value of planetary exploration

For all the scientific breakthroughs it produces, the space program in general — and planetary exploration in particular — is an inexpensive enterprise. "People grossly overestimate the budget that NASA gets," said Niebur. The president's fiscal year 2016 budget calls for $18.5 billion overall for NASA — 0.46 percent of the federal budget. "Most people think it's 10 times that much."
Of that, the allotment for planetary science has been cut to $1.36 billion — the fourth such proposed cut by the Obama administration, and far short of what is needed by the program. (The rest of NASA's budget goes to earth science, human space exploration, and operation of the International Space Station, among other things.) According to the Planetary Society, a nonprofit space research and advocacy organization, for the planetary science division to run well, the United States should spend at least $1.5 billion every year to explore other worlds — "less overall," they report, "than what Americans spent on dog toys in 2012."
Planetary exploration has changed the way we think about the air we breathe and the oceans we sail Fiscal year 2013 saw the White House's Office of Management and Budget call for slashing planetary science funding by one-fifth. Though Congress restored much of the money, the program has yet to fully recover, and with the doleful figures in the 2016 budget, it is again up to Congress to find money to keep the program funded.
In that regard, planetary science is at a disadvantage compared to other federal programs. During the budget standoff in 2013, for example, national parks were closed, which prompted an immediate backlash from the public. But because it generally takes several years for spacecraft to reach the outer planets, they are already funded by the time they start returning data. In other words, the ticket is purchased before the flight arrives at its destination. As such, from the public's point of view, the planetary science program will seem stronger than ever, returning spectacular images of alien worlds, while in fact the program is hobbling along, ill-prepared for the future due to consecutive years of reduced budgets.

An image of the comet 67P/CG taken from the European Space Agency's Philae lander in November 2014 (European Space Agency/Pool/Anadolu Agency/Getty Images)

Missions can take decades to see through to completion. In 2014, the European Space Agency landed a robot on a comet. It was the culmination of a very long project. When the mission, called Rosetta, was first approved in 1994, new computers came installed with Microsoft Windows 3.1. It then took a decade to plan the mission and design and build the spacecraft and lander. Facebook was less than a month old when the spacecraft launched in 2004, and another decade would elapse before it arrived at comet 67P/Churyumov-Gerasimenko. When the Philae lander made contact with the comet, the mission had been in progress for 21 years, not including the years of research that preceded its approval.
Cassini-Huygens, NASA's ongoing flagship mission to Saturn, was launched in 1997. New Horizons was approved in 2001 and launched in 2006. It will arrive at Pluto in July 2015. Juno, which is set to orbit Jupiter for a year starting in 2016, was launched in 2011. Such lengthy timelines mean that planetary exploration is largely incompatible with jarring starts and stops. A steady launch/arrival tempo must be sustained; as one spacecraft is returning science, another should be en route to another celestial body. An interruption in the cadence means that the clock is reset.
Niebur said there are two major consequences to cutting the outer planet exploration budget. "First, we stop making new discoveries," he said. "The pace of the scientific research and scientific discoveries slows down." More importantly, perhaps, is that the scientists working on these missions only get older, and absent active missions they retire or find work in the private sector. Meanwhile, without ongoing missions, it gets harder to attract young scientists into the field. "The field slowly begins dying," said Niebur. "You start losing a lot of the knowledge that we've built up. And then when you finally do decide to begin missions again, you've got to spend the resources to rebuild that knowledge."

A new field, vulnerable to attack

The exploration of other worlds began in 1962 with the launch of the Mariner 2 space probe to Venus. Modern planetary science is a relatively new field, and resides at the intersection of multiple scientific disciplines to include astronomy, geology, oceanography, and atmospheric science, among others. Historically, it has lacked the political and cultural influence of astronomy or astrophysics. Because of this, it has remained particularly susceptible to cuts and even cancellation.

That almost happened in 1981, when the White House proposed slashing NASA's budget. The Reagan administration attempted to defund Galileo, the storied spacecraft that would eventually study the Jovian system. It also considered eliminating the Jet Propulsion Laboratory, the agency's research and development center. The White House stopped taking calls from James Beggs, NASA's administrator at the time. A position paper issued by the Office of Management and Budget noted, "OMB staff believe that lower priority programs such as planetary exploration must be curtailed — even if they have been successful in the past." George Keyworth, Reagan's science advisor, told the White House budget review board "the cut in planetary exploration represents an example of good management." Galileo was only saved at the last minute when Howard Baker, the Republican Senate Majority Leader, personally intervened, reaching out to the White House in support of the mission, eventually brokering a compromise to keep the planetary science alive.
The situation then was much more perilous than it is today. Planetary science is presently bolstered by its maturation over time as a field of study, and by its demonstrable successes. While NASA's human exploration program retools for the exploration of Mars (or the moon, or an asteroid, depending on the whims of whomever is elected president), the robotic program is garnering impressive headlines. The landing of Curiosity on Mars, for example, must surely rank as an engineering wonder of not one but two worlds. New Horizons's flyby of Pluto is likely to be one of the biggest stories of 2015, and part of science textbooks forever.
"It serves as reminder of what planetary exploration can do for the image of NASA and the public consciousness of NASA," said Casey Dreier, the advocacy director of the Planetary Society. "[The European Space Agency's] Rosetta was a great antidote for the dismal other news that was happening in the world at the end 2014. We had all this nasty stuff with ISIS and terrorists and international politics with an aggressive Russia, but here you have suddenly, oh yeah, look at this: here's a robot landing on a comet for the first time. This is what humanity can do as an expression of pure curiosity. It was an unambiguous reminder that we're not all bad."
Still, the Obama White House has been particularly uncompromising about cutting the budget for solar system exploration. In 2013, the Office of Management and Budget proposed cutting planetary science, specifically, by 21 percent, to $1.19 billion. The following year it proposed a budget of $1.22 billion, and in fiscal year 2015, it wanted $1.28 billion — each far below the $1.5 billion dog toy standard. The proposed cuts in 2015 went beyond belt-tightening, removing funding for NASA to operate the Mars rover Opportunity and the Lunar Reconnaissance Orbiter, which is currently circling the moon. (The president's proposed 2016 budget again attempts to kill Opportunity and the orbiter.) In each case, Congress found ways to reinsert much of the lost funding. Without the institutional support of the White House, however, NASA cannot count on the money materializing each year. The space agency cannot make five-year contracts and simply hope that Congress appropriates the money.

Our Magellan

In times of budgetary uncertainty, NASA is forced to proceed with only the most reliable mission proposals. This means a lot of thrilling plans to explore other worlds fall by the wayside. The most notable of these, perhaps, was the Titan Mare Explorer. TiME, as it was called, was a low-cost mission proposal in 2009 to send a spacecraft to Titan, one of Saturn's moons. The spacecraft was also a boat, and would have splashed down onto one of Titan's lakes. There, it would have sailed around, analyzing the chemistry of the sea and the makeup of the air above it. It would have taken photographs of the lake and its waves. It would have even had a microphone to hear Titan's waves lapping against its side. The very idea of such a mission outpaces the fever dreams of science fiction. Sadly, lacking funding, the mission never left PowerPoint, and the launch window is now closed. (A successor mission — this time using a submarine — has since been proposed.)
Another mission that didn't survive the proposal stage was the Europa Jupiter Science Mission-Laplace, a joint mission with the European Space Agency. NASA would send a probe to Europa, one of Jupiter's moons, and the European Space Agency would send a probe to Ganymede, another moon of Jupiter. Having two highly capable spacecraft in the same place at the same time would have greatly improved the quality of data produced because of the addition of interactive analysis systems. NASA pulled out of the mission in 2011 for budgetary reasons.
"The field slowly begins dying. You start losing a lot of the knowledge that we've built up." The European Space Agency has vowed to carry on with its side of the deal, and has since reorganized its Ganymede mission as the Jupiter Icy Moon Explorer — the unfortunately abbreviated JUICE. Set to launch in 2022 and arrive at Jupiter in 2030, JUICE will examine Ganymede's magnetic field (it is the only moon in the solar system to have one) as well as its topography, oceans, and atmosphere.
Because of starvation budgets, it is nearly impossible to get a mission onto the launch pad and into space, though with seemingly superhuman perseverance it can be done. Consider the New Horizons mission to Pluto, humanity's last great hope to maintain an active presence in the outer planets from 2017 until a planned mission to Europa is underway. Dr. Alan Stern, the principal investigator of the New Horizons mission and former associate administrator for NASA's Science Mission Directorate, first conceived of a Pluto mission in the late 1980's. New Horizons was the sixth Pluto mission of which he was a part. The previous five were canceled before being realized.

A montage of Jupiter and its moon Io, captured from New Horizons in February 2007 (NASA)

"The timescale and the cost and the complexity all end up on the ‘hard' side of easy-to-hard to do outer planet missions," he said. Throughout the 1990s and early 2000s, each of the Pluto missions that NASA studied grew in cost to the point that the agency felt they were untenable. "There was only so much desire and so much budget, and when it got out of control on budget there wasn't enough desire to stomach the cost increases. So they put their pencils down. And then the scientific community would come back and say, ‘We really want this mission. Try it again. Let's think of a different approach.'"
The Pluto mission was thus opened up to any organization that wanted to make a proposal, with NASA choosing the most promising entry. Stern's team won the competition in 2001. "I was convinced as the project leader that if we ever got out of control on cost that we would be canceled as well. So I made sure we stayed in the [cost] box, which we did. And one of the breakthroughs of New Horizons is that it is a much lower-cost outer-planets mission than any in a long time. In fact, if you compare it to Voyager, its cost is about two dimes on the dollar. Twenty percent as much."
But even using the long timelines that characterize the exploration of the outer solar system, Stern and his team worked a long time — 14 years — to see New Horizons through from a concept to takeoff. "Persistence is something that we talk a lot about at New Horizons. We feeland did from the beginningthat we were kind of the stewards of this. I felt a lot like this was probably the last chance."
As a result of the work and doggedness of the New Horizons team, the first probe to each planet in the solar system will have been launched by the United States. Such firsts transcend even the exciting research that results from a robust planetary exploration program, and will feature in classrooms for centuries to come. "In our own time it very much exemplifies best in our country to people of other countries," Stern said. "We do this with our dollars but we share the knowledge with all mankind. And even in foreign countries that don't get along with the United States, kids still learn about the exploration of planets and they know that the United States did it without having to be told. The names of programs like Apollo and Voyager are in textbooks in every language."

All these worlds are yours except Europa?

If humanity has a future in the outer planets, it is on Europa. For the second time running, the Decadal Survey, which represents a scientific consensus concerning the most pressing goals for planetary exploration, has recommended a Europa mission. (The most recent survey gave slightly higher priority to a Mars sample retrieval mission). In December's continuing resolution to fund the government, Congress specifically earmarked $100 million to study a possible Europa mission, and the proposed fiscal year 2016 budget likewise endorses a such a mission, meaning Congress and the White House might be in rare agreement on something of consequence.
Meanwhile, mounting evidence of the Jovian moon's habitability helps along the idea of such a mission. The conditions on Europa do not merely suggest that the moon contained microbial life 100 million years ago. The conditions suggest that Europa might have life today, and that life might be more complex than a microbe. Either way, there are staggering implications for our understanding of habitability and life in the universe. If life is found on Europa, it would mean that there are at least two habitable worlds in a single solar system, suggesting a galaxy teeming with life. Conversely, if Europa, with its ideal survival conditions, is found to be barren, it might mean a much lonelier universe. If the mission were in fact fully approved and funded, it wouldn't launch until sometime in the 2020s, before making the long journey to the Jovian system.
Dr. Louise Prockter, a planetary geologist and the assistant supervisor of the Science Branch at the Johns Hopkins University Applied Physics Laboratory, would serve as one of two deputy project scientists on the mission. She was the chair of Europa's science definition team, and much like Alan Stern has spent years working to turn a mission proposal into a spacecraft on the launch pad. She and her team have internalized the lessons of the collapse of the last Europa mission, the Europa Jupiter System Mission-Laplace.
"People have been slowly but surely buying into the fact that, yeah, maybe Europa is the place that we should be going as a community," she said. "That this is really a important target."
Her team's efforts are part of a larger endeavor that involves developing the science of Europa, finding ways to trim mission costs, and keeping the community of planetary scientists on board while attracting new supporters. The team's efforts seem to be paying off, helped along by the growing scientific evidence that favors Europa. "The other thing that's helped Europa is that astrobiology has become a much bigger aspect of science," Prockter said. "And Europa, we think, is probably the best place in the solar system to go and look for life outside of the earth. It's taken years and years and years of plugging away and showing up and presenting our studies and knocking down the issues every time they come up, every time there's a problem, just figuring out a way around it. ... We are finally getting close to the finish line."
Concerning the cost of what would be a flagship-class mission for NASA, she said the lessons learned from a previous Europa proposal have informed how this one is designed. "We were forced to go back to the drawing board and rethink our whole concept and it forced us to really get down to the basics about what is really important here, and how can we do that at a lower cost? The concept we have today — the Europa Clipper concept, as it's called — is the result of the last two or three years of really concentrated study, and that has allowed us to get to a really sophisticated level of detail."

Reporters look at the New Horizons spacecraft in November 2005 at Kennedy Space Center. (Bruce Weaver/AFP/Getty Images)

Taking from the lessons of previous canceled missions to other worlds, her team is not anticipating technology that may not materialize. The Europa mission does not rely on instruments that should be smaller, or materials that might be lighter, which means the mission is ready to go, technologically. "One of the concepts we tried to keep in our minds while we were thinking about the science for Europa: we would think about no miracles," Prockter said. "No technology that didn't exist or that couldn't be adapted fairly readily from existing technology. ... So that we didn't need to wait another 10 years for anything new to be developed; we could start with what we have now. And that also helped us keep the cost fairly low."
If elected officials are waiting for a mission worth funding, short of discovering a field of alien-built oil wells on Pluto, the scientific consensus holds that there is nowhere in the outer planets more promising than Europa. There is some poetry in that moon being the future of planetary science; it was also part of the field's origin. In 1610, when Galileo discovered Europa and three other moons of Jupiter, he made humanity's tentative first step toward establishing planetary science as a field of study. Provided lawmakers write the check, however, the challenges only just begin. When asked what happens after a "yes" call from NASA, Prockter launched into an astonishing, off-the-cuff list of considerations.
"Every spacecraft has different parts, different subsystems, different elements. We've been studying this for a long time. We have already been investigating launch vehicles. We have investigated power. We are now going to solar power; we were originally going to be a nuclear powered spacecraft. We've spent years investigating what power would we need." Her team has worked with a science definition team to take scientific objectives and translate them into mission requirements. If, for example, someone wanted to resolve an image of Europa's surface at a certain resolution, a host of issues must first be addressed. "What kind of instrument do I need? What focal length of my camera do I need? Do I need a color filter? How close to the surface do I have to be? If I'm flying by, what speed do I have to fly by at to not smear that image out? So there are so many elements to every little decision that you make, every trade that you make."
"With the US doing fewer missions, you're having a shrinking of the human presence in the solar system" The hardware considerations aren't limited to measurement instruments and imagery. "We have propulsion. We have thermal. We're out at Jupiterit's pretty cold out there, but we have to survive for years. And we have to get enough power to power our solar panels. We have planetary protection. How do we not take bugs from Earth and contaminate the environment? How do we not crash into Europa? How do we make sure that that doesn't happen, or that if it does happen that we're prepared for that? Radiation: how do we shield all that radiation, all those particles? Do we know enough about them? What do we need to do while we're out there? Trajectory: we've tried several different trajectories to try and minimize the radiation."
There's also the basic question of building the spacecraft itself.  "Where do you put things? How do you communicate with the ground? What sized antenna do you need? Can you get coverage from the ground stations on earth at the times you need them? There are a million different decisions to be made, but we've already made a lot of those trades, so we have this concept, and so when we get the go-ahead, when we're finally ready to go, we would actually start implementing that." Some decisions and trades must still be made. "Right now we don't have an actual payload. If NASA selects a payload from these instruments, they might not select the ones we've recommended. They might select other things because they think they're better, or their panels say they're better. So then we have to go back and if they gave us a different instrument, we'd have to figure out what science we can do with that instrument, and how do we accommodate that onto a spacecraft? It's pretty cool."

Beyond 2017

As NASA's exploration of other worlds contracts, foreign space agencies are beginning to stack triumph upon triumph. Two months before European Space Agency achieved the first soft landing on a comet, the Indian Space Research Agency put a probe in orbit around Mars. In December, the Japan Aerospace Exploration Agency launched Hayabusa 2, an asteroid sample return mission. In 2013, China set a lander and rover on the moon as part of an aggressive plan to put Chinese footprints on the lunar surface. There are some things, however, that only NASA can do.
"Nobody can do deep space like NASA can," said Emily Lakdawalla, the senior editor of the Planetary Society. "Other nations can go to the moon, Mars, and to the inner solar system like Venus and Mercury. But they don't have nuclear power sources. They don't have radioisotope thermoelectric generators — only the United States and Russia have those. Right now, nobody but the United States can go beyond Jupiter. With the US doing fewer planetary missions, you're having a shrinking of the human presence in the solar system and fewer missions out into the deepest part of the solar system. But there will be a lot more stuff going on at the moon and Mars and asteroids."
These robots will likely run much longer than their expected end-of-mission dates. "The fact that we have so many active missions at the same time — it's great but it's also a headache for NASA bookkeepers because it doesn't cost nothing to keep these missions going." Going forward, she said, NASA should consider a new way to plan for success so that extended missions of spacecraft don't take money from other planned missions. "You kind of wish that when a government agency were super successful that they might throw a little bit more money at that government agency."
In the meantime, the lights in the outer solar system will continue to switch off, one probe and planet at a time. NASA will continue to absorb broadsides from the Office of Management and Budget and do its best with such halfhearted executive mandates as the asteroid redirect mission. "If we're not inspired by that, it's not NASA's fault — it's our leadership's fault," said Lakdawalla. "And we need our Congress and our president and the people of the United States to stand up and say, ‘This isn't good enough. I want my moon base. I want my Mars base, and I'm willing to put the money forward to make that happen.' And if you're me, I want my outer planets missions. I want a Uranus orbiter. I want go back to Jupiter. I want to fly to the plumes of Enceladus. I want a boat on Titan. Those are what I want. I understand that not all of the American public agrees with all of those goals, so I'm not going to get them all. But I would like at least one of them."

The Scientific Case For Intelligent Design ~ William Dembski, PhD

Click to zoom

The World's First Photo Book ~ Objectivity #5

Click to zoom

Burroughs' UFO Injury, ET Slides & Alien Abduction on Coast To Coast Radio

Watch the Amazing Flight of a Toy Robot to 95,000 Feet

Click to zoom

10 Most AMAZING Buildings in the World!

Click to zoom

A Major Victory for the Open Web

Excerpt from blog.mozilla.org
We just accomplished something very important together. Today, the U.S. Federal Communications Commission voted for strong net neutrality protections. This happened because millions of people — including many hundreds of thousands in Mozilla’s community — joined together as citizens of the Web to demand those strong protections.

This is an important victory for the world’s largest public resource, the open Web. Net neutrality is a key aspect of enabling innovation from everywhere, and especially from new players and unexpected places. Net neutrality allows citizens and consumers to access new innovations and judge the merit for themselves. It allows individual citizens to make decisions, without gate-keepers who decide which possibilities can become real. Today’s net neutrality rules help us protect this open and innovative potential of the Internet.

Mozilla builds our products to put this openness and opportunity into the hands of individuals. We are organized as a non-profit so that the assets we create benefit everyone. Our products go hand-in-hand with net neutrality; they need net neutrality to bring the full potential of the Internet to all of us.

Today’s net neutrality rules are an important step in protecting opportunity for all. This victory was not inevitable. It occurred because so many people took action, so many people put their voice into the process. To each of you we say “Thank you.” Thank you for taking the time to understand the issue, for recognizing it’s important, and for taking action. Thank you for helping us build openness and opportunity into the very fabric of the Internet.

As Dawn Spacecraft Approaches, A Second Mysterious Light Emerges on Planet Ceres

Ceres' Two Spots

Excerpt from sciencetimes.com

Originally discovered in 1801 by an astronomer in Sicily, Ceres has had quite an interesting history to date. Originally believed to be a shining star in the sky, when it was first observed to move, it was redesignated as a comet.

"I have announced this star as a comet" astronomer who discovered Ceres, Giuseppe Piazzi de Palermo said. "But since it is not accompanied by any nebulosity and further, since its movement is so slow and rather uniform, it has occurred to me several times that it might be something better than a comet." 

Piazzi fell ill and passed away before he could ever find Ceres again, but thanks to his preliminary research, astronomers today have verified that the beaming light in the sky is something better than a comet-it's a dwarf planet. And though it is largely composed of ice and rock, lying in-between Mars and Jupiter, Ceres continues to fascinate astronomers with its strange and unanswerable features. 

To better answer Piazzi's original questions, and some new ones that have arisen in the more than two centuries since it was first discovered, researchers with NASA developed the Dawn Spacecraft mission which was originally launched in 2007. After a successful 14-month-orbit around Vesta in the asteroid belt, Dawn is now moving onto the next dwarf planet and will arrive to Ceres within the next week. And the first question that the Dawn mission would like to answer is a glaring one, visible on the surface.

When astronomers first peering into the telescope to view Ceres, a glaring spot of light seemed to illuminate through the rocky surface. Data has been collected, and though researchers have made educated guesses as to what it may be, they have not met an answer that could quite fit the bill. Today this question is even further complicated as with Dawn's close approach NASA has captured an even closer glimpse of the surface of Ceres, and now it appears that two shining spots are visible on the surface-not just one.

Captured on last Thursday, Feb. 19, the two bright spots appeared when Dawn was only 29,000 miles away from Ceres. But while NASA researchers are still pondering the question of two spots, the team is expecting even a few more surprises as Dawn will orbit the dwarf planet a mere 233 miles from its surface, detailing it entirely to develop a detailed 3D image of Ceres.

"We knew from Hubble observations that there was variation in the colouration and reflectivity of the surface" lead scientist with the Dawn mission, Chris Russell says. "But when we got [near] Ceres we saw bright spots, and they are really, really bright."

So what could the spots be?
While researchers are just speculating, until they can gain a better view of the surface, NASA astronomers say that the two spots may be patches of ice reflecting sunlight, who became exposed when objects from the nearby asteroid belt collided. Another posited theory is that shiny minerals or ice could be pushed to the surface by subterranean volcanic activity. But they're still not ruling out that the lights may be evidence of Ceres hiding liquid water. And if it is, that means that life on the distant dwarf planet may exist.

Bees Do It, Humans Do It ~ Bees can experience false memories, scientists say

Excerpt from csmonitor.com

Researchers at Queen Mary University of London have found the first evidence of false memories in non-human animals.

It has long been known that humans – even those of us who aren't famous news anchors – tend to recall events that did not actually occur. The same is likely true for mice: In 2013, scientists at MIT induced false memories of trauma in mice, and the following year, they used light to manipulate mice brains to turn painful memories into pleasant ones.

Now, researchers at Queen Mary University of London have shown for the first time that insects, too, can create false memories. Using a classic Pavlovian experiment, co-authors Kathryn Hunt and Lars Chittka determined that bumblebees sometimes combine the details of past memories to form new ones. Their findings were published today in Current Biology.
“I suspect the phenomenon may be widespread in the animal kingdom," Dr. Chittka said in a written statement to the Monitor.
First, Chittka and Dr. Hunt trained their buzzing subjects to expect a reward if they visited two artificial flowers – one solid yellow, the other with black-and-white rings. The order didn’t matter, so long as the bee visited both flowers. In later tests, they would present a choice of the original two flower types, plus one new one. The third type was a combination of the first two, featuring yellow-and-white rings. At first, the bees consistently selected the original two flowers, the ones that offered a reward.

But a good night’s sleep seemed to change all that. One to three days after training, the bees became confused and started incorrectly choosing the yellow-and-white flower (up to fifty percent of the time). They seemed to associate that pattern with a reward, despite having never actually seen it before. In other words, the bumblebees combined the memories of two previous stimuli to generate a new, false memory.

“Bees might, on occasion, form merged memories of flower patterns visited in the past,” Chittka said. “Should a bee unexpectedly encounter real flowers that match these false memories, they might experience a kind of deja-vu and visit these flowers expecting a rich reward.”

Bees have a rather limited brain capacity, Chittka says, so it’s probably useful for them to “economize” by storing generalized memories instead of minute details.

“In bees, for example, the ability to learn more than one flower type is certainly useful,” Chittka said, “as is the ability to extract commonalities of multiple flower patterns. But this very ability might come at the cost of bees merging memories from multiple sequential experiences.”

Chittka has studied memory in bumblebees for two decades. Bees can be raised and kept in a lab setting, so they make excellent long-term test subjects.

“They are [also] exceptionally clever animals that can memorize the colors, patterns, and scents of multiple flower species – as well as navigate efficiently over long distances,” Chittka said.

In past studies, it was assumed that animals that failed to perform learned tasks had either forgotten them or hadn’t really learned them in the first place. Chittka’s research seems to show that animal memory mechanisms are much more elaborate – at least when it comes to bumblebees.

“I think we need to move beyond understanding animal memory as either storing or not storing stimuli or episodes,” Chittka said. “The contents of memory are dynamic. It is clear from studies on human memory that they do not just fade over time, but can also change and integrate with other memories to form new information. The same is likely to be the case in many animals.”

Chittka hopes this study will lead to a greater biological understanding of false memories – in animals and humans alike. He says that false memories aren’t really a “bug in the system,” but a side effect of complex brains that strive to learn the big picture and to prepare for new experiences.

“Errors in human memory range from misremembering minor details of events to generating illusory memories of entire episodes,” Chittka said. “These inaccuracies have wide-ranging implications in crime witness accounts and in the courtroom, but I believe that – like the quirks of information processing that occur in well known optical illusions – they really are the byproduct of otherwise adaptive processes.”

“The ability to memorize the overarching principles of a number of different events might help us respond in previously un-encountered situations,” Chittka added. “But these abilities might come at the expense of remembering every detail correctly.”
So, if generating false memories goes hand in hand with having a nervous system, does all this leave Brian Williams off the hook?

“It is possible that he conflated the memories,” Chittka said, “depending on his individual vulnerability to witnessing a traumatic event, plus a possible susceptibility to false memories – there is substantial inter-person variation with respect to this. It is equally possible that he was just ‘showing off’ when reporting the incident, and is now resorting to a simple lie to try to escape embarrassment. That is impossible for me to diagnose.”

But if Mr. Williams genuinely did misremember his would-be brush with death, Chittka says he shouldn’t be vilified.

“You cannot morally condemn someone for reporting something they think really did happen to them,” Chittka said. “You cannot blame an Alzheimer patient for forgetting to blow out the candle, even if they burn down the house as a result. In the same way, you can't blame someone who misremembers a crime as a result of false memory processes."

“Seedling” For Supermassive Black Holes Found

Excerpt from clapway.com


A recently discovered black hole may help astronomers to piece together the family tree of these enigmatic cosmic objects. While most black holes are classified as either stellar-mass or the supermassive black holes that can be found at the center of some galaxies, this new find fits into neither category.

The discovery, called the intermediate-mass black hole (IMBH), has proved to be a tricky proposition. With a mass somewhere between a few hundred to a few hundred thousand times that of our own Sun, the size of these intermediates can vary widely.

This particular black hole was found in an arm of the spiral galaxy NGC-2276, and has been sensibly named NGC-2276-3c. Lying about 100 million light-years from earth, astronomers were able to tease images through the use of NASA’s Chandra X-Ray Observatory and the European Very Long Baseline Interferometry Network.

Although researchers have theorized about the existence of these IMBHs, locating one has proven elusive until now. A recent to-be-published paper by an international team of researchers delves into the specifics of NGC-2276-3c.

“Astronomers have been looking very hard for these medium-sized black holes,” study co-author Tim Roberts, of the University of Durham in the United Kingdom, said in a statement. “There have been hints that they exist, but the IMBHs have been acting like a long-lost relative that isn’t interested in being found.”

So what was found? It appears that the recently discovery has characteristics of both the smaller stellar-mass and the much larger supermassive black holes. It serves as an intermediary between the two, and some think that these intermediaries are the beginnings of what could very well become a supermassive.

The team of researchers also noted that the black holes is firing off super powerful blasts of radio jets. Think of these as material, traveling at nearly the speed of light and emitting radio waves, which are thrown out of dense objects. Our newly found black hole is shooting them out almost 2000 light-years into space. Within a radius of approximately 1000 light-years around NGC-2276-3c there are no new star formations, suggesting that the radio jets are pushing out all the gas necessary for star creation.

The full report on NGC-2276-3c should be appearing shortly in the journal Monthly Notices of the Royal Astronomical Society.

Another Problem for Evolution Theory? 'Big Brain' Gene Found in Humans, But Not in Chimps

Image: Mouse brain
M. Florio and W. Huttner / Max Planck Institute
This embryonic mouse cerebral cortex was stained to identify cell nuclei (in blue) and a marker for deep-layer neurons (in red). The human-specific gene known as ARHGAP11B was selectively expressed in the right hemisphere: Note the folding of the neocortical surface.

Excerpt from  nbcnews.com  

By Tia Ghose

ave the way for the rise of human intelligence by dramatically increasing the number of neurons found in a key brain region. 

This gene seems to be uniquely human: It is found in modern-day humans, Neanderthals and another branch of extinct humans called Denisovans, but not in chimpanzees. 

By allowing the brain region called the neocortex to contain many more neurons, the tiny snippet of DNA may have laid the foundation for the human brain's massive expansion.
"It is so cool that one tiny gene alone may suffice to affect the phenotype of the stem cells, which contributed the most to the expansion of the neocortex," said study lead author Marta Florio, a doctoral candidate in molecular and cellular biology and genetics at the Max Planck Institute of Molecular Cell Biology and Genetics in Dresden, Germany. 

She and her colleagues found that the gene, called ARHGAP11B, is turned on and highly activated in the human neural progenitor cells, but isn't present at all in mouse cells. This tiny snippet of DNA, just 804 genetic bases long, was once part of a much longer gene. Somehow, this fragment was duplicated, and the duplicated fragment was inserted into the human genome. 

In follow-up experiments, the team inserted and turned on this DNA snippet in the brains of mice. The mice with the gene insertion grew what looked like larger neocortex regions. 

The researchers reviewed a wide variety of genomes from modern-day and extinct species — confirming that Neanderthals and Denisovans had this gene, while chimpanzees and mice do not. That suggests that the gene emerged soon after humans split off from chimpanzees, and that it helped pave the way for the rapid expansion of the human brain. 

Florio stressed that the gene is probably just one of many genetic changes that make human cognition special.

The gene was described in a paper published online Thursday by the journal Science.

The ancient myth of Prometheus ~ The God Banished from Earth ~ An animated presentation

Heracles freeing Prometheus from his torment by the eagle (Attic black-figure cup, c. 500 BC)

Click to zoom

Telescopes: Crash Course Astronomy #6

Click to zoom

Which telescope to buy?

Click to zoom

10 Terrifying Cursed Objects That Actually EXIST!

Click to zoom

Breaking Up Over A Stupid Argument

Click to zoom

PCRM: The Results of a Plant Based Diet Fighting Disease

Click to zoom

Could Our Milky Way Galaxy Become a Quasar?


Click to zoom

Windwheel concept combines tourist attraction with "silent turbine"

 The Dutch Windwheel concept is designed to be part energy icon, part tourist attraction an...

Excerpt from gizmag.com
By Stu Robarts

The Dutch have long used windmills to harness wind energy. A new concept proposed for city of Rotterdam, however, is surely one of the most elaborate windmills ever conceived. The Dutch Windwheel is a huge circular wind energy converter that houses apartments, a hotel and a giant coaster ride.

The concept is designed to be part energy icon, part tourist attraction and part residential building. It is a 174-m (571-ft) structure comprising two huge rings that appear to lean against each other. "We wanted to combine a big attraction for Rotterdam with a state-of-the-art sustainable concept," explains Lennart Graaff of the Dutch Windwheel Corporation, to Gizmag.

The larger outer ring houses 40 pods on rails that move around the ring and provide those who visit with views of Rotterdam and its port. The smaller inner ring, meanwhile, houses 72 apartments, a 160-room hotel across seven floors and a panoramic restaurant and viewing gallery. Perhaps most remarkable feature of of all, however, is a huge "bladeless turbine" that spans the center smaller ring.
Although this may look and sound like some of the more out-there architectural concepts that Gizmag has featured, it is actually based on existing (albeit prototypical) technology. The electrostatic wind energy convertor (EWICON) was developed at Delft Technical University and generates electricity by harnessing the movement of charged water droplets in the wind. Its lack of moving parts makes it noiseless and easier to maintain than traditional turbines.

Dhiradj Djairam, of the TU Delft team that developed the EWICON, tells Gizmag that the Dutch Windwheel Corporation has expressed "a serious interest" in the technology. Djairam says he has provided an explanation of the technology to the organization and provided a rough outline for a realistic research and development program. To date, only small-scale research projects have been carried out, with additional funding opportunities being explored.

The Dutch Windwheel concept is 174 m (571 ft) tall and has underwater foundations

The Dutch Windwheel concept has other sustainable aspects, too. Photovoltaic thermal hybrid panels would be used to contribute to the generation of electricity, and rainwater would be collected for use in the building. The Dutch Windwheel Corporation says the building itself is designed to be built with locally-sourced materials, and in such a way as it could ultimately be disassembled and re-used elsewhere.

Among the other features of the design are space for commercial functions in the structure's plinth, and foundations that are underwater, making it it look as though the structure is floating. 

We're told that the amount of power the Dutch Windwheel will require to run – and be able to generate – is not yet clear. Likewise, the final technologies and additional sustainability features that would be present in the building have yet to be finalized...

What It's Like to Be at the 24th International UFO Congress

Excerpt from nbcnews.com
FOUNTAIN HILLS, Ariz. — If words like UFO, extraterrestrial, crops circles and abductee have ever piqued your paranormal interest, do yourself a favor and head to the International UFO Congress. 

The annual conference—which holds the Guinness record for being the largest convention dedicated to unidentified flying objects—takes place in the picturesque desert town of Fountain Hills, and this year it ran from Feb. 18 to 22. It's worth noting that Arizona is known as a hotbed of activity when it comes to sightings. Thousands flock to the annual event, which is produced by Open Minds, a paranormal research organization. 

Each attendee has his or her own reason for being there. My goal was to find out if modern science and technology have changed the game when it comes to UFO sightings and evidence gathering. 

"A lot of people think, go to a UFO convention, it's going to be tinfoil hats, but that's not what this is. We have NASA astrobiologists speak, scientists, high-ranking military officials, the works. I mean, there's a lot of really credible people covering this subject," said UFO Congress co-organizer and paranormal journalist Maureen Elsberry.

Air Force UFO documents now available online

When attending a UFO conference, the best approach is to come in with an open mind, ask lots of questions and talk with people about why they are there. Everyone has a story, from the speakers to the attendees, and even the vendors (some of whom double as ufologists). 

The highlight of this year's conference was undeniably the speaker series, and it was standing room only to see one man, Bob Lazar. Lazar first spoke out in 1989, claiming that he'd worked as a government scientist at a secret mountainside facility south of Area 51's main site, where he saw remarkably advanced UFO technology. Critics have sought to discredit Lazar, questioning his employment record and educational credentials. 

During the conference, George Knapp, an investigative TV reporter in Las Vegas who broke the Lazar story in '89, led an onstage question-and-answer session with Lazar, who discussed the work he did at a place called S4. Lazar spoke in detail about the alien UFO hangars and UFO propulsion systems he was allegedly asked to reverse engineer, and even loosely sketched them out for the audience. 

"All the science fiction had become reality," said Lazar, who was noticeably uncomfortable and clearly surprised by the fact that, decades later, he remains such a draw. 

You never know whom you'll bump into at the Congress. In the vendor hall, I met sculptor Alan Groves, who traveled all the way from Australia to peddle his "true to scale" Zetan alien figurines. I wondered if his side gig was lucrative, only to realize he was selling the figures like hotcakes. Then we talked about his day job, and he told me he's worked on special and creature effects for films such as "Star Wars," "Alien," "Labyrinth" and "Jurassic Park." 

Many of the attendees told me that hard evidence is a requirement for ufologists and paranormal field experts. Derrel Sims, also known as Alien Hunter, told me he spent two years in the CIA, and also has served as a police officer and licensed private investigator. 

He said his first alien encounter happened at age 4, and others in his family have also seen aliens. In 38-plus years of alien research, Sims has learned this: "If you look, the evidence is there." To date, he said, more than 4,000 pieces of that evidence exist. 

Sims is adamant about only working with evidence-based methods, using DNA tests and collecting samples as well as relying on ultraviolet, infrared and x-ray tools in his research. He said that, in 1992, he discovered aliens leave their own kind of fluorescent fingerprint, and he continues to test for these clues. He added that if you have had an alien encounter, it's important to react quickly to gather evidence: "fluorescence" stays on the skin for only 24 hours. He said that other marks aliens leave include "scoop" marks, which are an identifying thread some abductees have in common. 

Another commonality he's discovered is heritage. He said that, in his research, he has found 45 percent of all abductions happen to Native Americans, Irish and Celtic people, and he said that women also have a higher chance of being abducted. 

When it comes to filming hard-to-explain phenomena, Patty Greer, who makes documentaries about crop circles, said that quadcopters — a.k.a. drones — have added production value to her films. Lynne Kitei, who covered a mass UFO sighting in her book and in the documentary The Phoenix Lights, said that even low-tech tools, like the 35mm film she used, are still a reliable way to gather proof of inexplicable flying craft, especially because they offer something an iPhone doesn't: negatives.

White House responds to UFO request

Night vision also offers added opportunities for UFO researchers, according to Ben Hansen, who was the host and lead investigator of SyFy channel's "Fact or Faked: Paranormal Files." He's now the owner of Night Vision Ops, an online store that sells night-vision technology. Hansen said that the consumer accessibility of new military-grade technologies in thermal and light amplification scopes are upping the game for the everyday UFO enthusiast. 

To close out an intense few days on site at the Congress, Hansen's team invited me to a night watch near Arizona's Superstition Mountains. It was fascinating to see the latest optics add incredible clarity to the night sky, amplifying available light up to 50,000 times beyond what the unaided eye can see. Using the right technology, we were also able to see that a certain flying object, which made everyone nearby jump, wasn't a UFO after all. It was a bat. 

I was surrounded by some serious tech all weekend, and it was eye-opening to see the ways that UFO hunters are gathering scientific evidence to learn more about the paranormal world. But I have to say, the gadget that was the most useful to me at the conference was my iPhone, which I used to download a free nightlight app for kids. For the few hours I managed to sleep, it was with the soothing illumination provided by "Kiwi the Green Koala." In short, I was officially freaked out.

Confirmed: Space Rock Created Swedish Lake

Confirmed: Space Rock Created Swedish Lake
A photo taken through a microscope of shocked minerals from the Hummeln crater in Sweden.

Excerpt from news.yahoo.com

After two centuries of arguing about its origin, scientists have finally confirmed that Hummeln Lake in southern Sweden is an impact crater.  Hummeln Lake's rounded shoreline first drew interest from scientists as far back as the 1820s, but it wasn't identified as a possible impact crater until the 1960s, said Carl Alwmark, lead author of the new study and a geologist at Lund University in Sweden. Until then, geoscientists thought the circular structure, which is 0.7 miles (1.2 kilometers) wide and 525 feet (160 meters) deep, was an extinct volcano. Now researchers think the crater resulted from a space rock that was likely about 325 feet to 490 feet (100 to 150 m) in diameter, Alwmark said.  

Alwmark and his colleagues recently found the telltale clues that confirm an impact carved out the Hummeln crater. Their findings were published Feb. 18 in the journal Geology. 

The key evidence includes shocked quartz from a layer of breccia at the lake. A breccia is a type of rock made up of angular fragments of other rocks held together by a finer-grained medium, similar to natural cement. Breccia forms in many settings on Earth, but the shocked features in the quartz minerals are created only under the intense pressures caused by meteorite impacts. 

Others have searched before for similar features, but Alwmark hit the jackpot while working at the nearby Siljan crater, one of the largest on Earth. Hummeln Lake is a popular tourist stop, with rental cabins surrounded by silver birch trees, and Alwmark said he popped in and picked up some rocks on the drive between craters.  
"These shocked features are not very common, and we got lucky," he told Live Science.  

The crash site adds to the growing body of evidence that meteorites bombarded Earth during the Late Ordovician Period, Alwmark said. Scientists think that a wave of space debris slammed into the Earth after a huge smashup between two large bodies out in the asteroid belt some 470 million years ago. (One of the crash victims was the source of all L-chondrite meteorites.)  Researchers think about 100 times as many meteorites fell on Earth during the Ordovician compared with today. However, although many small meteorites and micrometeorites dated to the Late Ordovician have been found, scientists have only discovered about a dozen large craters. These include the unusual Lockne-Malingen double crater in northern Sweden and the Ames Crater in Oklahoma. 

The growing list of craters supports models that suggest larger rocks also pummeled the planet.  "There are too many craters at this point for it just to be a coincidence," Alwmark said.